Search results
Results From The WOW.Com Content Network
Modalities applied to measurement of ejection fraction is an emerging field of medical mathematics and subsequent computational applications. The first common measurement method is echocardiography, [7] [8] although cardiac magnetic resonance imaging (MRI), [8] [9] cardiac computed tomography, [8] [9] ventriculography and nuclear medicine (gated SPECT and radionuclide angiography) [8] [10 ...
Myocardial infarction or cardiomyopathy causes damage to the myocardium, which impairs the heart's ability to eject blood and, therefore, reduces ejection fraction. This reduction in the ejection fraction can manifest itself as heart failure. Low EF usually indicates systolic dysfunction, and severe heart failure can result in EF lower than 0.2 ...
Ejection fraction (EF) is a parameter related to SV. EF is the fraction of blood ejected by the left ventricle (LV) during the contraction or ejection phase of the cardiac cycle or systole. Prior to the start of systole, during the filling phase , the LV is filled with blood to the capacity known as end diastolic volume (EDV). During systole ...
Stroke volume is an important determinant of cardiac output, which is the product of stroke volume and heart rate, and is also used to calculate ejection fraction, which is stroke volume divided by end-diastolic volume. Because stroke volume decreases in certain conditions and disease states, stroke volume itself correlates with cardiac function.
Several parameters can be calculated for each loop (e.g. end-diastolic pressure, end-systolic pressure, ejection and filling intervals, contractility index, stroke volume, and ejection fraction). More importantly, other interesting parameters are derived from series of loops obtained under changing conditions.
SVs are also used to calculate ejection fraction, which is the portion of the blood that is pumped or ejected from the heart with each contraction. To calculate ejection fraction, SV is divided by EDV. Despite the name, the ejection fraction is normally expressed as a percentage.
The computer can calculate the patient's ejection fraction, end diastolic volume, wall motion, end systolic volume, myocardial thickening, shortening, and contractility. However, one is viewing an average of all collected heart beats over the image acquisition.
The resulting images show that the volumetrically derived blood pools in the chambers of the heart and timed images may be computationally interpreted to calculate the ejection fraction and injection fraction of the heart. The Massardo method can be used to calculate ventricle volumes. This nuclear medicine scan yields an accurate, inexpensive ...