Search results
Results From The WOW.Com Content Network
An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junction .
Electrical impulses are sent through one electrode to stimulate the nerve. The second electrode records the impulse sent through the nerve as a result of stimulation. The time difference between stimulation from the first electrode and pickup by the downstream electrode is known as the latency. Nerve conduction latencies are typically on the ...
These cells produce an electrical impulse known as a cardiac action potential that travels through the electrical conduction system of the heart, causing it to contract. In a healthy heart, the SA node continuously produces action potentials, setting the rhythm of the heart (sinus rhythm), and so is known as the heart's natural pacemaker.
It employs pacemaker cells that produce electrical impulses, known as cardiac action potentials, which control the rate of contraction of the cardiac muscle, that is, the heart rate. In most humans, these cells are concentrated in the sinoatrial (SA) node, the primary pacemaker, which regulates the heart’s sinus rhythm.
An impulse (action potential) that originates from the SA node at a relative rate of 60–100 bpm is known as a normal sinus rhythm. If SA nodal impulses occur at a rate less than 60 bpm, the heart rhythm is known as sinus bradycardia. If SA nodal impulses occur at a rate exceeding 100 bpm, the consequent rapid heart rate is sinus tachycardia ...
Cardiac excitation-contraction coupling (Cardiac EC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. [1] This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input.
The conduction of nerve impulses is an example of an all-or-none response. In other words, if a neuron responds at all, then it must respond completely. Greater intensity of stimulation, like brighter image/louder sound, does not produce a stronger signal but can increase firing frequency. [45]: 31 Receptors respond in different ways to stimuli.
The impulses are generated by the device and are delivered through electrodes on the skin near to the muscles being stimulated. The electrodes are generally pads that adhere to the skin. The impulses mimic the action potential that comes from the central nervous system , causing the muscles to contract.