When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Zero-dimensional_space

    In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. [1] A graphical illustration of a zero-dimensional space is a point. [2]

  3. Quantum dot - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot

    Individual quantum dots can be created from two-dimensional electron or hole gases present in remotely doped quantum wells or semiconductor heterostructures called lateral quantum dots. The sample surface is coated with a thin layer of resist and a lateral pattern is then defined in the resist by electron beam lithography. This pattern can then ...

  4. Point (geometry) - Wikipedia

    en.wikipedia.org/wiki/Point_(geometry)

    In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...

  5. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    The zero-point energy makes no contribution to Planck's original law, as its existence was unknown to Planck in 1900. [25] The concept of zero-point energy was developed by Max Planck in Germany in 1911 as a corrective term added to a zero-grounded formula developed in his original quantum theory in 1900. [26]

  6. Brane - Wikipedia

    en.wikipedia.org/wiki/Brane

    A point particle is a 0-brane, of dimension zero; a string, named after vibrating musical strings, is a 1-brane; a membrane, named after vibrating membranes such as drumheads, is a 2-brane. [2] The corresponding object of arbitrary dimension p is called a p -brane, a term coined by M. J. Duff et al. in 1988.

  7. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    The two bands touch at the zone corners (the K point in the Brillouin zone), where there is a zero density of states but no band gap. Thus, graphene exhibits a semi-metallic (or zero-gap semiconductor) character, although this is not true for a graphene sheet rolled into a carbon nanotube due to its curvature.

  8. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    The point symmetry of a structure can be further described as follows. Consider the points that make up the structure, and reflect them all through a single point, so that (x,y,z) becomes (−x,−y,−z). This is the 'inverted structure'. If the original structure and inverted structure are identical, then the structure is centrosymmetric.

  9. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    At absolute zero all atoms are in their vibrational ground state and show zero point quantum mechanical motion, so that the wavefunction of a single vibrational mode is not a sharp peak, but approximately a Gaussian function (the wavefunction for n = 0 depicted in the article on the quantum harmonic oscillator). At higher temperatures the ...