When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  3. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    For example, when the value of the function is defined as the result of a limiting process (i.e. an infinite sequence or series), it must be demonstrated that such a limit always exists. Characterization 1

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...

  6. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.

  7. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  8. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers. The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ 0, | x | → 0. The way of passing to the limit is often not stated explicitly, if it is clear from the context.

  9. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    This generalization includes as special cases limits on an interval, as well as left-handed limits of real-valued functions (e.g., by taking T to be an open interval of the form (–∞, a)), and right-handed limits (e.g., by taking T to be an open interval of the form (a, ∞)).