Search results
Results From The WOW.Com Content Network
Cause of skin effect. A main current I flowing through a conductor induces a magnetic field H.If the current increases, as in this figure, the resulting increase in H induces separate, circulating eddy currents I W which partially cancel the current flow in the center and reinforce it near the skin.
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure ...
Voltage would increase as necessary so that a constant current will flow. Current from a discharging inductor is one example. For sensitive electronics, excessive current can flow if this voltage spike exceeds a material's breakdown voltage, or if it causes avalanche breakdown. In semiconductor junctions, excessive electric current may destroy ...
Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states:
The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.
Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform.