When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .

  3. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and

  4. Lindström quantifier - Wikipedia

    en.wikipedia.org/wiki/Lindström_quantifier

    In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966.

  5. Decidability of first-order theories of the real numbers

    en.wikipedia.org/wiki/Decidability_of_first...

    In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables.

  6. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...

  7. List of first-order theories - Wikipedia

    en.wikipedia.org/wiki/List_of_first-order_theories

    There are three common ways of handling this in first-order logic: Use first-order logic with two types. Use ordinary first-order logic, but add a new unary predicate "Set", where "Set(t)" means informally "t is a set". Use ordinary first-order logic, and instead of adding a new predicate to the language, treat "Set(t)" as an abbreviation for ...

  8. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    as well as "infinitely many objects exist such that …" and "only finitely many objects exist such that…". The first of these forms is expressible using ordinary quantifiers, but the latter two cannot be expressed in ordinary first-order logic. [4] Uniqueness depends on a notion of equality.

  9. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    propositional logic, Boolean algebra, first-order logic ⊤ {\displaystyle \top } denotes a proposition that is always true. The proposition ⊤ ∨ P {\displaystyle \top \lor P} is always true since at least one of the two is unconditionally true.