Search results
Results From The WOW.Com Content Network
Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation. Moreover, a preorder on a set X {\displaystyle X} can equivalently be defined as an equivalence relation on X {\displaystyle X} , together with a partial order on the set of equivalence class.
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom , this preorder is even a partial order (called the specialization order ).
A total order is a total preorder which is antisymmetric, in other words, which is also a partial order. Total preorders are sometimes also called preference relations . The complement of a strict weak order is a total preorder, and vice versa, but it seems more natural to relate strict weak orders and total preorders in a way that preserves ...
The identity relation = on any set is also a partial order in which every two distinct elements are incomparable. It is also the only relation that is both a partial order and an equivalence relation because it satisfies both the antisymmetry property of partial orders and the symmetry property of equivalence relations. Many advanced properties ...
In general, two points x and y are topologically indistinguishable if and only if x ≤ y and y ≤ x, where ≤ is the specialization preorder on X. It follows that a space X is T 0 if and only if the specialization preorder ≤ on X is a partial order. There are numerous partial orders on a finite set. Each defines a unique T 0 topology.
A market order instructs your broker to execute your trade of a security at the best available price at the moment you send in your order. If you’re buying, you’ll transact at the seller’s ...
The order dual of a partially ordered set is the same set with the partial order relation replaced by its converse. Order-embedding . A function f between posets P and Q is an order-embedding if, for all elements x , y of P , x ≤ y (in P ) is equivalent to f ( x ) ≤ f ( y ) (in Q ).