Search results
Results From The WOW.Com Content Network
The Casio FX-7000G is a calculator which is widely known as being the world's first graphing calculator available to the public. It was introduced to the public and later manufactured between 1985 and c. 1988. [2] Notable features are its ability to graph functions, [3] and that it is programmable.
Such integrals are known as line integrals and surface integrals respectively. These have important applications in physics, as when dealing with vector fields. A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use.
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
Line integrals of scalar fields over a curve do not depend on the chosen parametrization r of . [ 2 ] Geometrically, when the scalar field f is defined over a plane ( n = 2) , its graph is a surface z = f ( x , y ) in space, and the line integral gives the (signed) cross-sectional area bounded by the curve C {\displaystyle {\mathcal {C}}} and ...
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral.The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals.
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
Even if the gradient theorem (also called fundamental theorem of calculus for line integrals) has been proved for a differentiable (so looked as smooth) curve so far, the theorem is also proved for a piecewise-smooth curve since this curve is made by joining multiple differentiable curves so the proof for this curve is made by the proof per ...