When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  3. Wallis's conical edge - Wikipedia

    en.wikipedia.org/wiki/Wallis's_conical_edge

    It is named after the English mathematician John Wallis, who was one of the first to use Cartesian methods to study conic sections. [1] Figure 2. Wallis's Conical Edge with a = 1.01, b = c = 1 Figure 1. Wallis's Conical Edge with a = b = c = 1

  4. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  5. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    Afrikaans; العربية; বাংলা; Беларуская; Беларуская (тарашкевіца) Bosanski; Català; Čeština; Cymraeg; Dansk ...

  6. Circumconic and inconic - Wikipedia

    en.wikipedia.org/wiki/Circumconic_and_inconic

    In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.

  7. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    Projective geometry also includes a full theory of conic sections, a subject also extensively developed in Euclidean geometry. There are advantages to being able to think of a hyperbola and an ellipse as distinguished only by the way the hyperbola lies across the line at infinity ; and that a parabola is distinguished only by being tangent to ...

  8. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    In geometry, the conic constant (or Schwarzschild constant, [1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by K = − e 2 , {\displaystyle K=-e^{2},} where e is the eccentricity of the conic section.

  9. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other." [5]