Search results
Results From The WOW.Com Content Network
It can be used in calculating the sample size for a future study. When measuring differences between proportions, Cohen's h can be used in conjunction with hypothesis testing . A " statistically significant " difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population ...
The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...
where the h[•] sequence is the impulse response, and K is its length. x [•] represents the input sequence being downsampled. In a general purpose processor, after computing y [ n ], the easiest way to compute y [ n +1] is to advance the starting index in the x [•] array by M , and recompute the dot product.
The user specifies the alternative hypothesis in terms of differing response rates, means, survival times, relative risks, or odds ratios. Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated.
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]