When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable (two classes, coded by an indicator variable) or a continuous variable (any real value).

  3. Binary regression - Wikipedia

    en.wikipedia.org/wiki/Binary_regression

    The simplest direct probabilistic model is the logit model, which models the log-odds as a linear function of the explanatory variable or variables. The logit model is "simplest" in the sense of generalized linear models (GLIM): the log-odds are the natural parameter for the exponential family of the Bernoulli distribution, and thus it is the simplest to use for computations.

  4. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor , the logarithm of the partition function :

  5. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.

  6. Probit model - Wikipedia

    en.wikipedia.org/wiki/Probit_model

    As such it treats the same set of problems as does logistic regression using similar techniques. When viewed in the generalized linear model framework, the probit model employs a probit link function. [2] It is most often estimated using the maximum likelihood procedure, [3] such an estimation being called a probit regression.

  7. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    This is also known as the log loss (or logarithmic loss [4] or logistic loss); [5] the terms "log loss" and "cross-entropy loss" are used interchangeably. [6] More specifically, consider a binary regression model which can be used to classify observations into two possible classes (often simply labelled and ).

  8. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    Binomial regression is closely connected with binary regression. If the response is a binary variable (two possible outcomes), then these alternatives can be coded as 0 or 1 by considering one of the outcomes as "success" and the other as "failure" and considering these as count data : "success" is 1 success out of 1 trial, while "failure" is 0 ...

  9. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model .