When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: . Temperature 298.15 K (25.00 °C; 77.00 °F); ...

  3. Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Reactivity_series

    Even with this proviso, the electrode potentials of lithium and sodium – and hence their positions in the electrochemical series – appear anomalous. The order of reactivity, as shown by the vigour of the reaction with water or the speed at which the metal surface tarnishes in air, appears to be Cs > K > Na > Li > alkaline earth metals,

  4. Lithium oxide - Wikipedia

    en.wikipedia.org/wiki/Lithium_oxide

    Burning lithium metal produces lithium oxide. Lithium oxide forms along with small amounts of lithium peroxide when lithium metal is burned in the air and combines with oxygen at temperatures above 100 °C: [3] 4Li + O 2 → 2 Li 2 O. Pure Li 2 O can be produced by the thermal decomposition of lithium peroxide, Li 2 O 2, at 450 °C [3] [2] 2 Li ...

  5. Half-cell - Wikipedia

    en.wikipedia.org/wiki/Half-cell

    The electrochemical series, which consists of standard electrode potentials and is closely related to the reactivity series, was generated by measuring the difference in potential between the metal half-cell in a circuit with a standard hydrogen half-cell, connected by a salt bridge. The standard hydrogen half-cell: 2H + (aq) + 2e − → H 2 (g)

  6. Electrochemical window - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_window

    The electrochemical window (EW) is an important concept in organic electrosynthesis and design of batteries, especially organic batteries. [5] This is because at higher voltage (greater than 4.0 V) organic electrolytes decompose and interferes with the oxidation and reduction of the organic cathode/anode materials.

  7. Solvated electron - Wikipedia

    en.wikipedia.org/wiki/Solvated_electron

    Solvated electrons are involved in the reaction of alkali metals with water, even though the solvated electron has only a fleeting existence. [10] Below pH = 9.6 the hydrated electron reacts with the hydronium ion giving atomic hydrogen, which in turn can react with the hydrated electron giving hydroxide ion and usual molecular hydrogen H 2 .

  8. Talk:Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Talk:Reactivity_series

    Just put some in water. This is because of increased electron shielding. The Reactivity Series and the Electrochemical Series are two similar, but slightly different series. The Reactivity Series is based on displacement reactions, and the Electrochemical Series is based on the electrode potential needed to produce a metal from electrolysis.

  9. Lithium - Wikipedia

    en.wikipedia.org/wiki/Lithium

    Lithium oxide is widely used as a flux for processing silica, reducing the melting point and viscosity of the material and leading to glazes with improved physical properties including low coefficients of thermal expansion. Worldwide, this is one of the largest use for lithium compounds.