Ads
related to: grain boundaries and dislocations free printable test for kindergarten scienceteacherspayteachers.com has been visited by 100K+ users in the past month
education.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.
Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion [1] and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep. [2]
In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.
Initial grain size affects the critical temperature. Grain boundaries are good sites for nuclei to form. Since an increase in grain size results in fewer boundaries this results in a decrease in the nucleation rate and hence an increase in the recrystallization temperature; Deformation affects the final grain size. Increasing the deformation ...
Because grains usually have varying crystallographic orientations, grain boundaries arise. While undergoing deformation, slip motion will take place. Grain boundaries act as an impediment to dislocation motion for the following two reasons: 1. Dislocation must change its direction of motion due to the differing orientation of grains. [4] 2.
The result is that the dislocation must bend (which requires greater energy, or a greater stress to be applied) around the precipitates, which inevitably leaves residual dislocation loops encircling the second phase material and shortens the original dislocation. This schematic shows how a dislocation interacts with solid phase precipitates.
Bulging recrystallization often occurs along boundaries of old grains at triple junctions. At high temperatures, the growing grain has a lower dislocation density than the grain(s) consumed, and the grain boundary sweeps through the neighboring grains to remove dislocations by high-temperature grain-boundary migration crystallization.