Search results
Results From The WOW.Com Content Network
Univariate is a term commonly used in statistics to describe a type of data which consists of observations on only a single characteristic or attribute. A simple example of univariate data would be the salaries of workers in industry. [1]
For example, univariate data are composed of a single scalar component. In time series analysis, the whole time series is the "variable": a univariate time series is the series of values over time of a single quantity. Correspondingly, a "multivariate time series" characterizes the changing values over time of several quantities.
Continuous uniform distribution. One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely.
The null hypothesis is that the data set is similar to the normal distribution, therefore a sufficiently small p-value indicates non-normal data. Multivariate normality tests include the Cox–Small test [ 33 ] and Smith and Jain's adaptation [ 34 ] of the Friedman–Rafsky test created by Larry Rafsky and Jerome Friedman .
Regression is a statistical technique used to help investigate how variation in one or more variables predicts or explains variation in another variable. Bivariate regression aims to identify the equation representing the optimal line that defines the relationship between two variables based on a particular data set.