Ads
related to: correct way to use spirometer- Personal Protection Gear
Fully functional and protective.
For a high level of safety
- Single Gas Detectors
Reliable & precise even
under the toughest of conditions
- Gas Monitoring Systems
Get the best possible monitoring
system for your individual needs
- Firefighting Equipment
Solutions that mitigate dangers
confronting Firefighters
- Portable Gas Detection
Detect, measure, monitor and react
to any gases in the immediate area
- Respiratory Protection
Breathe easier and work safely
See our broad portfolio
- Personal Protection Gear
Search results
Results From The WOW.Com Content Network
A spirometer measures ventilation, the movement of air into and out of the lungs. The spirogram will identify two different types of abnormal ventilation patterns, obstructive and restrictive. There are various types of spirometers that use a number of different methods for measurement (pressure transducers, ultrasonic, water gauge).
A modern USB PC-based spirometer. Device for spirometry. The patient places his or her lips around the blue mouthpiece. The teeth go between the nubs and the shield, and the lips go over the shield. A nose clip guarantees that breath will flow only through the mouth. Screen for spirometry readouts at right.
A typical incentive spirometer consists of an inhalation nozzle, which is seen facing toward the camera. The curved plastic on the left is a handle. The piston is in the middle (along with an adjustable mark to indicate a goal), and on the right side is a flow indicator showing whether the patient is inhaling too rapidly.
The helium dilution technique is the way of measuring the functional residual capacity of the lungs (the volume left in the lungs after normal expiration). This technique is a closed-circuit system where a spirometer is filled with a mixture of helium (He) and oxygen. The amount of He in the spirometer is known at the beginning of the test ...
Measurement of PEFR requires training to correctly use a meter and the normal expected value depends on the patient's sex, age, and height. It is classically reduced in obstructive lung disorders such as asthma. Due to the wide range of 'normal' values and the high degree of variability, peak flow is not the recommended test to identify asthma.
Output of a spirometer. Vital capacity (VC) is the maximum amount of air a person can expel from the lungs after a maximum inhalation. It is equal to the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume. It is approximately equal to Forced Vital Capacity (FVC). [1] [2]