When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires much energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material.

  3. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure , and tend to decrease the electrical and thermal conductivity of the material.

  4. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    This toughening becomes noticeable when there is a narrow size distribution of particles that are appropriately sized. Researchers typically accept the findings of Faber's analysis, which suggest that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value.

  5. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    To heal this, grain-boundary sliding occurs. The diffusional creep rate and the grain boundary sliding rate must be balanced if there are no voids or cracks remaining. When grain-boundary sliding can not accommodate the incompatibility, grain-boundary voids are generated, which is related to the initiation of creep fracture.

  6. Grain boundary sliding - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_sliding

    Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.

  7. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...

  8. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    The absence of voids results from solid-state diffusive mass transfer, locally enhanced crystal plastic deformation, or solution and precipitation of a grain boundary fluid. [1] This mechanism operates at a low strain rate produced by neighbor switching. Grain boundary sliding is grain size- and temperature-dependent.

  9. Surface energy - Wikipedia

    en.wikipedia.org/wiki/Surface_energy

    The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).