Search results
Results From The WOW.Com Content Network
The modern commercial production of potassium carbonate is by reaction of potassium hydroxide with carbon dioxide: [3] 2 KOH + CO 2 → K 2 CO 3 + H 2 O. From the solution crystallizes the sesquihydrate K 2 CO 3 ·1.5H 2 O ("potash hydrate"). Heating this solid above 200 °C (392 °F) gives the anhydrous salt.
Aqueous alkaline solutions do not reject carbon dioxide (CO 2) so the fuel cell can become "poisoned" through the conversion of KOH to potassium carbonate (K 2 CO 3). [2] Because of this, alkaline fuel cells typically operate on pure oxygen, or at least purified air and would incorporate a 'scrubber' into the design to clean out as much of the ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Because aggressive bases like KOH damage the cuticle of the hair shaft, potassium hydroxide is used to chemically assist the removal of hair from animal hides. The hides are soaked for several hours in a solution of KOH and water to prepare them for the unhairing stage of the tanning process. This same effect is also used to weaken human hair ...
The alkaline battery gets its name because it has an alkaline electrolyte of potassium hydroxide (KOH) instead of the acidic ammonium chloride (NH 4 Cl) or zinc chloride (ZnCl 2) electrolyte of the zinc–carbon batteries. Other battery systems also use alkaline electrolytes, but they use different active materials for the electrodes.
As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture.In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. [1]