When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  3. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    2.3 Product rule for multiplication by a scalar. ... k are the standard unit vectors for the x, y, ... When the Laplacian is equal to 0, ...

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Pseudoscalar - Wikipedia

    en.wikipedia.org/wiki/Pseudoscalar

    A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a ...

  7. Trace diagram - Wikipedia

    en.wikipedia.org/wiki/Trace_diagram

    Combining the above diagrams for the cross product and the dot product, one can read off the three leftmost diagrams as precisely the three leftmost scalar triple products in the above identity. It can also be shown that the rightmost diagram represents det[u v w]. The scalar triple product identity follows because each is a different ...

  8. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  9. Jacobi triple product - Wikipedia

    en.wikipedia.org/wiki/Jacobi_triple_product

    for complex numbers x and y, with |x| < 1 and y0. It was introduced by Jacobi in his work Fundamenta Nova Theoriae Functionum Ellipticarum. The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra.