When.com Web Search

  1. Ads

    related to: skip sampling negative samples test for cancer research study
    • Why Donate?

      We can change the way cancer is

      treated and cured. Make an impact.

    • Make A Sustained Impact

      Donate a small amount every month

      to support ongoing cancer research.

Search results

  1. Results From The WOW.Com Content Network
  2. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    Examples of sampling bias include self-selection, pre-screening of trial participants, discounting trial subjects/tests that did not run to completion and migration bias by excluding subjects who have recently moved into or out of the study area, length-time bias, where slowly developing disease with better prognosis is detected, and lead time ...

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    If a test has a false positive rate of one in ten thousand, but only one in a million samples (or people) is a true positive, most of the positives detected by that test will be false. The probability that an observed positive result is a false positive may be calculated using Bayes' theorem .

  4. Coverage error - Wikipedia

    en.wikipedia.org/wiki/Coverage_error

    Her sampling frame might be a list of third-graders in the school district (sampling frame). Over time, it is likely that the researcher will lose track of some of the children used in the original study, so that her sample frame of adults no longer matches the sample frame of children used in the study.

  5. Sampling bias - Wikipedia

    en.wikipedia.org/wiki/Sampling_bias

    In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample [1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. [2]

  6. Self-selection bias - Wikipedia

    en.wikipedia.org/wiki/Self-selection_bias

    If the study measures an improvement in absolute test scores due to participation in the preparation course, they may be skewed to show a higher effect. A relative measure of 'improvement' might improve the reliability of the study somewhat, but only partially. Self-selection bias causes problems for research about programs or products.

  7. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  8. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...

  9. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    In clinical practice, post-test probabilities are often just estimated or even guessed. This is usually acceptable in the finding of a pathognomonic sign or symptom, in which case it is almost certain that the target condition is present; or in the absence of finding a sine qua non sign or symptom, in which case it is almost certain that the target condition is absent.