When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The matrix and the vector can be represented with respect to a right-handed or left-handed coordinate system. Throughout the article, we assumed a right-handed orientation, unless otherwise specified. Vectors or forms The vector space has a dual space of linear forms, and the matrix can act on either vectors or forms.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  4. Geometric transformation - Wikipedia

    en.wikipedia.org/wiki/Geometric_transformation

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...

  5. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components. Let k be a unit vector defining a rotation axis, and let v be any vector to rotate about k by angle θ ( right hand rule , anticlockwise in the figure), producing the rotated vector v rot {\displaystyle \mathbb {v} _{\text ...

  6. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  7. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system.

  8. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance from a given line parallel to that direction. [1] This type of mapping is also called shear transformation, transvection, or just shearing.

  9. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    Normally, a matrix represents a linear map, and the product of a matrix and a column vector represents the function application of the corresponding linear map to the vector whose coordinates form the column vector. The change-of-basis formula is a specific case of this general principle, although this is not immediately clear from its ...