When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]

  3. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series expansion of the sawtooth function (below) looks more complicated than the simple formula () =, so it is not immediately apparent why one would need the Fourier series. While there are many applications, Fourier's motivation was in solving the heat equation .

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The sinc function, which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable. The Fourier transform may be defined in some cases for non-integrable functions, but the Fourier transforms of integrable functions have several strong properties.

  5. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finite-duration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact.

  6. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.

  7. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Left: A continuous function (top) and its Fourier transform (bottom). Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top).

  8. Fourier inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Fourier_inversion_theorem

    In many situations the basic strategy is to apply the Fourier transform, perform some operation or simplification, and then apply the inverse Fourier transform. More abstractly, the Fourier inversion theorem is a statement about the Fourier transform as an operator (see Fourier transform on function spaces).

  9. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.