Ad
related to: finding distance with pythagorean theorem
Search results
Results From The WOW.Com Content Network
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.
The distance formula in Cartesian coordinates is derived from the Pythagorean theorem. [36] If ( x 1 , y 1 ) and ( x 2 , y 2 ) are points in the plane, then the distance between them, also called the Euclidean distance , is given by
The Pythagorean theorem is used to calculate the distance between points in a plane. Even over short distances, the accuracy of geographic distance calculations which assume a flat Earth depend on the method by which the latitude and longitude coordinates have been projected onto the plane.
Thus, if is any point on the plane other than itself, then the line segments from the origin to and from to form a right triangle, and by the Pythagorean theorem the distance from the origin to is
Since it is straightforward to calculate the length of each linear segment (using the Pythagorean theorem in Euclidean space, for example), the total length of the approximation can be found by summation of the lengths of each linear segment; that approximation is known as the (cumulative) chordal distance. [1]
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The distance between the base of the ladder and the wall, x, and the height of the ladder on the wall, y, represent the sides of a right triangle with the ladder as the hypotenuse, h. The objective is to find dy/dt, the rate of change of y with respect to time, t, when h, x and dx/dt, the rate of change of x, are known. Step 1: =
As a consequence of the Pythagorean theorem, the hypotenuse is the longest side of any right triangle; that is, the hypotenuse is longer than either of the triangle's legs. For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse.