When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    An integer overflow can cause the value to wrap and become negative, which violates the program's assumption and may lead to unexpected behavior (for example, 8-bit integer addition of 127 + 1 results in −128, a two's complement of 128). (A solution for this particular problem is to use unsigned integer types for values that a program expects ...

  3. Year 2038 problem - Wikipedia

    en.wikipedia.org/wiki/Year_2038_problem

    The problem is similar in nature to the year 2000 problem, the difference being the Year 2000 problem had to do with base 10 numbers, whereas the Year 2038 problem involves base 2 numbers. Analogous storage constraints will be reached in 2106 , where systems storing Unix time as an unsigned (rather than signed) 32-bit integer will overflow on 7 ...

  4. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, [1] but also, as a ...

  5. Time formatting and storage bugs - Wikipedia

    en.wikipedia.org/wiki/Time_formatting_and...

    On 5 January 1975, the 12-bit field that had been used for dates in the TOPS-10 operating system for DEC PDP-10 computers overflowed, in a bug known as "DATE75". The field value was calculated by taking the number of years since 1964, multiplying by 12, adding the number of months since January, multiplying by 31, and adding the number of days since the start of the month; putting 2 12 − 1 ...

  6. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    The overflow flag is thus set when the most significant bit (here considered the sign bit) is changed by adding two numbers with the same sign (or subtracting two numbers with opposite signs). Overflow cannot occur when the sign of two addition operands are different (or the sign of two subtraction operands are the same). [1]

  7. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...

  8. 128-bit computing - Wikipedia

    en.wikipedia.org/wiki/128-bit_computing

    The DEC VAX supported operations on 128-bit integer ('O' or octaword) and 128-bit floating-point ('H-float' or HFLOAT) datatypes. Support for such operations was an upgrade option rather than being a standard feature. Since the VAX's registers were 32 bits wide, a 128-bit operation used four consecutive registers or four longwords in memory.

  9. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.