Search results
Results From The WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In order to enhance the attractiveness of this book as a textbook, we have included worked-out examples at appropriate points in the text and have included lists of exercises for Chapters 1 — 9. These exercises range from routine problems to alternative proofs of key theorems, but containing also material going beyond what is covered in the text.
The seven problems were officially announced by John Tate and Michael Atiyah during a ceremony held on May 24, 2000 (at the amphithéâtre Marguerite de Navarre) in the Collège de France in Paris. [3] Grigori Perelman, who had begun work on the Poincaré conjecture in the 1990s, released his proof in 2002 and 2003. His refusal of the Clay ...
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics.This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems.
The goat problems do not yield any new mathematical insights; rather they are primarily exercises in how to artfully deconstruct problems in order to facilitate solution. Three-dimensional analogues and planar boundary/area problems on other shapes, including the obvious rectangular barn and/or field, have been proposed and solved. [1]
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.