When.com Web Search

  1. Ads

    related to: prove that 11 is irrational worksheet printable template 1 6 4

Search results

  1. Results From The WOW.Com Content Network
  2. Wadim Zudilin - Wikipedia

    en.wikipedia.org/wiki/Wadim_Zudilin

    Zudilin proved that at least one of the four numbers ζ(5), ζ(7), ζ(9), or ζ(11) is irrational. [2] For that accomplishment, he won the Distinguished Award of the Hardy-Ramanujan Society in 2001. [3] With Doron Zeilberger, Zudilin [4] improved upper bound of irrationality measure for π, which as of November 2022 is the current best estimate.

  3. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible ...

  4. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  5. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...

  6. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). Assume log 2 3 is rational. For some positive integers m and n , we have

  7. Diophantine approximation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_approximation

    Thus the accuracy of the approximation is bad relative to irrational numbers (see next sections). It may be remarked that the preceding proof uses a variant of the pigeonhole principle: a non-negative integer that is not 0 is not smaller than 1. This apparently trivial remark is used in almost every proof of lower bounds for Diophantine ...

  8. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.

  9. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...