Ads
related to: ascendant in graph theory
Search results
Results From The WOW.Com Content Network
whose underlying undirected graph is a tree (any two vertices are connected by exactly one simple path), [6] with a distinguished root (one vertex is designated as the root), which determines the direction on the edges (arrows point away from the root; given an edge, the node that the edge points from is called the parent and the node that the ...
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.
In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. [2]
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The graph shown here appears as a subgraph of an undirected graph if and only if models the sentence ,,,.. In the first-order logic of graphs, a graph property is expressed as a quantified logical sentence whose variables represent graph vertices , with predicates for equality and adjacency testing.
This graph has circuit rank r = 2 because it can be made into a tree by removing two edges, for instance the edges 1–2 and 2–3, but removing any one edge leaves a cycle in the graph. In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges ...
In graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of .This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of ...