Search results
Results From The WOW.Com Content Network
This method swaps two variables by adding and subtracting their values. This is rarely used in practical applications, mainly because: It can only swap numeric variables; it may not be possible or logical to add or subtract complex data types, like containers. When swapping variables of a fixed size, arithmetic overflow becomes an issue.
Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations. Usually, multi-word compare-and-swap is implemented in software using normal double-wide compare-and-swap operations. [16] The drawback of this approach is a lack of scalability. Persistent compare-and-swap
Switch statements function somewhat similarly to the if statement used in programming languages like C/C++, C#, Visual Basic .NET, Java and exist in most high-level imperative programming languages such as Pascal, Ada, C/C++, C#, [1]: 374–375 Visual Basic .NET, Java, [2]: 157–167 and in many other types of language, using such keywords as ...
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
Those that do not can still implement an atomic test-and-set using a read-modify-write or compare-and-swap instruction. The test and set instruction, when used with boolean values, uses logic like that shown in the following function, except that the function must execute atomically. That is, no other process must be able to interrupt the ...
In computer science, read–modify–write is a class of atomic operations (such as test-and-set, fetch-and-add, and compare-and-swap) that both read a memory location and write a new value into it simultaneously, either with a completely new value or some function of the previous value.
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.