Search results
Results From The WOW.Com Content Network
The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain ...
For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration.
Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea. [ 2 ] [ 3 ] [ 4 ] The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.
Mathematical analysis formally developed in the 17th century during the Scientific Revolution, [3] but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of ancient Greek mathematics.
In applied mathematics and mathematical analysis, a fractional derivative is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. [2] Around the same time, Leibniz wrote to one of the Bernoulli brothers describing the similarity between ...
In the real numbers one can iterate the differentiation process, that is, apply derivatives more than once, obtaining derivatives of second and higher order. Higher derivatives can also be defined for functions of several variables, studied in multivariable calculus .