Search results
Results From The WOW.Com Content Network
As plates sink and heat up, released fluids can trigger seismicity and induce melting within the subducted plate and in the overlying mantle wedge. This type of melting selectively concentrates volatiles and transports them into the overlying plate. If an eruption occurs, the cycle then returns the volatiles into the oceans and atmosphere. [17]
The oceanic Nazca plate subducts beneath the continental South American plate at the Peru–Chile Trench. Just north of the Nazca plate, the oceanic Cocos plate subducts under the Caribbean plate and forms the Middle America Trench. Oceanic crust of the South American plate subducts under the Caribbean plate in the Lesser Antilles subduction zone.
When two oceanic plates migrate towards each other, one subducts below the other. Generally, the oceanic plate with higher density subducts beneath and the other one overrides the down-going slab. [1] The process continues until a buoyant continental margin sitting on the top of the subducting plate is introduced into the down-going slab.
Associated with the slab suction force is the idea of trench roll-back. As a slab of oceanic crust subducts into the mantle, the hinge of the plate (the point where the plate begins to subduct) tends to regress away from the trench. This occurs because there is effectively no force to hold the hinge in one location. [5]
A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. [1]
Tectonic plates are composed of the oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent plate boundaries, the process of subduction carries the edge of one plate down under the other plate and into the mantle. This process reduces the total surface area (crust) of the Earth.
Lithospheric processes which operate across mountain belts include those related to the theory of plate tectonics (e.g. tectonic plate convergence, folding, faulting, exhumation). Interaction of the asthenosphere, lithosphere and surface through the mantle process of flat-slab subduction. Grey indicates crust, purple indicates mantle ...
When the denser plate subducts beneath the upper plate, they are coupled at the interface (i.e. plate coupling). [31] [32] [33] The process of plate coupling thus generates tectonic force that follows the subduction direction. [27] The orientation of tectonic force gradually rotates toward the trench normal direction.