When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Midpoint polygon - Wikipedia

    en.wikipedia.org/wiki/Midpoint_polygon

    The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Rhomboid: a parallelogram in which adjacent sides are of unequal lengths, and some angles are oblique (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4] Rectangle: all four angles are right angles (equiangular). An equivalent ...

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The perimeter of a parallelogram is 2(a + b) where a and b are the lengths of adjacent sides. Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area. [7] The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a ...

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    For an example, any parallelogram can be subdivided into a trapezoid and a right triangle, as shown in figure to the left. If the triangle is moved to the other side of the trapezoid, then the resulting figure is a rectangle. It follows that the area of the parallelogram is the same as the area of the rectangle: [2] A = bh (parallelogram).

  6. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  7. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    For example, the Miura map fold is a rigid fold that has been used to deploy large solar panel arrays for space satellites. The napkin folding problem is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square.

  8. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is