Search results
Results From The WOW.Com Content Network
A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the innermost layer of an artery or vein), consisting of a thin wall of simple squamous endothelial cells. [2]
The central zone is composed of the glial cells, neuronal cell bodies and a high density of fenestrated capillaries. [8] Conversely, the rostral and caudal areas have a lower density of capillaries [8] and are mostly made of nerve fibers, with fewer neurons and glial cells seen in this area. Functionally, however, the SFO may be viewed in two ...
Retinal blood vessels that are similar to cerebral blood vessels maintain the inner blood-ocular barrier. This physiological barrier comprises a single layer of non-fenestrated endothelial cells, which have tight junctions. These junctions are impervious to tracer, so many substances can affect the metabolism of the eyeball.
Circumventricular organs (CVOs) (circum-: around ; ventricular: of ventricle) are structures in the brain characterized by their extensive and highly permeable capillaries, unlike those in the rest of the brain where there exists a blood–brain barrier (BBB) at the capillary level.
The blood–brain barrier is formed by the brain capillary endothelium and excludes from the brain 100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. [23] Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of most brain disorders.
The blood–ocular barrier is a barrier created by endothelium of capillaries of the retina and iris, ciliary epithelium and retinal pigment epithelium. [1] It is a physical barrier between the local blood vessels and most parts of the eye itself, and stops many substances including drugs from traveling across it. [2]
Diffusion through the capillary walls depends on the permeability of the endothelial cells forming the capillary walls, which may be continuous, discontinuous, and fenestrated. [4] The Starling equation describes the roles of hydrostatic and osmotic pressures (the so-called Starling forces ) in the movement of fluid across capillary endothelium .
In continuous capillaries the endothelial cells are tightly spaced, allowing only small molecules like ions or water to diffuse through the intercellular clefts (the gaps between the endothelial cells). In fenestrated and sinusoidal capillaries there is more space between the cells, allowing the diffusion of macro-molecules and some proteins.