When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    The enthalpy of fusion is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a wide range of pressures), 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification (when a substance changes from liquid to solid) is equal and opposite.

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole of atoms. The lower than 3 R number "per atom" (as is the case with diamond and beryllium) results from the “freezing out” of possible vibration modes for light atoms at suitably low temperatures, just as in many low ...

  4. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [3] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1, with a relative standard uncertainty of ...

  5. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    The molar heat capacity of a substance, which may be denoted by c m, is the heat capacity C of a sample of the substance, divided by the amount (moles) n of the substance in the sample:

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  7. Molar mass - Wikipedia

    en.wikipedia.org/wiki/Molar_mass

    In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.

  8. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Mass to moles: Convert grams of Cu to moles of Cu; Mole ratio: Convert moles of Cu to moles of Ag produced; Mole to mass: Convert moles of Ag to grams of Ag produced; The complete balanced equation would be: Cu + 2 AgNO 3 → Cu(NO 3) 2 + 2 Ag. For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by ...

  9. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    In thermodynamics, the specific volume of a substance (symbol: ν, nu) is the quotient of the substance's volume (V) to its mass (m): = It is a mass-specific intrinsic property of the substance. It is the reciprocal of density ρ and it is also related to the molar volume and molar mass: