When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Some very heavily optimized pipelines have yielded speed increases of several hundred times the original CPU-based pipeline on one high-use task. A simple example would be a GPU program that collects data about average lighting values as it renders some view from either a camera or a computer graphics program back to the main program on the CPU ...

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  4. List of performance analysis tools - Wikipedia

    en.wikipedia.org/wiki/List_of_performance...

    GUI based code profiler; does only basic timer-based profiling on Intel processors. Based on OProfile. Free/open source (GPL) or proprietary AMD CodeXL by AMD: Linux, Windows For GPU profiling and debugging: OpenCL. A tool suite for GPU profiling, GPU debugger and a static kernel analyzer. Free/open source (MIT) AMD uProf by AMD: Linux, Windows

  5. mlpack - Wikipedia

    en.wikipedia.org/wiki/Mlpack

    Bandicoot [6] is a C++ Linear Algebra library designed for scientific computing, it has the an identical API to Armadillo with objective to execute the computation on Graphics Processing Unit (GPU), the purpose of this library is to facilitate the transition between CPU and GPU by making a minor changes to the source code, (e.g. changing the ...

  6. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    When it was first introduced, the name was an acronym for Compute Unified Device Architecture, [4] but Nvidia later dropped the common use of the acronym and now rarely expands it. [5] CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [6]

  7. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]

  8. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  9. Google Tensor - Wikipedia

    en.wikipedia.org/wiki/Google_Tensor

    "Tensor" is a reference to Google's TensorFlow and Tensor Processing Unit technologies, and the chip is developed by the Google Silicon team housed within the company's hardware division, led by vice president and general manager Phil Carmack alongside senior director Monika Gupta, [15] in conjunction with the Google Research division.