When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    Missing not at random (MNAR) (also known as nonignorable nonresponse) is data that is neither MAR nor MCAR (i.e. the value of the variable that's missing is related to the reason it's missing). [5] To extend the previous example, this would occur if men failed to fill in a depression survey because of their level of depression.

  3. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    However, if data is a DataFrame, then data['a'] returns all values in the column(s) named a. To avoid this ambiguity, Pandas supports the syntax data.loc['a'] as an alternative way to filter using the index. Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a ...

  4. Listwise deletion - Wikipedia

    en.wikipedia.org/wiki/Listwise_deletion

    Listwise deletion is also problematic when the reason for missing data may not be random (i.e., questions in questionnaires aiming to extract sensitive information. [3] Due to the method, much of the subjects' data will be excluded from analysis, leaving a bias in data findings. For instance, a questionnaire may include questions about ...

  5. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    Because missing data can create problems for analyzing data, imputation is seen as a way to avoid pitfalls involved with listwise deletion of cases that have missing values. That is to say, when one or more values are missing for a case, most statistical packages default to discarding any case that has a missing value, which may introduce bias ...

  6. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  7. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    Python has many different implementations of the spearman correlation statistic: it can be computed with the spearmanr function of the scipy.stats module, as well as with the DataFrame.corr(method='spearman') method from the pandas library, and the corr(x, y, method='spearman') function from the statistical package pingouin.

  8. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    The Pandas and Polars Python libraries implement the Pearson correlation coefficient calculation as the default option for the methods pandas.DataFrame.corr and polars.corr, respectively. Wolfram Mathematica via the Correlation function, or (with the P value) with CorrelationTest. The Boost C++ library via the correlation_coefficient function.

  9. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The following example uses data from Chambers et al. [17] on daily readings of ozone for May 1 to September 30, 1973, in New York City. The data are in the R data set airquality, and the analysis is included in the documentation for the R function kruskal.test. Boxplots of ozone values by month are shown in the figure.