When.com Web Search

  1. Ads

    related to: power series calculus 2 calculator with steps and examples chart

Search results

  1. Results From The WOW.Com Content Network
  2. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.

  3. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .

  4. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    In calculus, often the growth rate of the coefficients of a power series can be used to deduce a radius of convergence for the power series. The reverse can also hold; often the radius of convergence for a generating function can be used to deduce the asymptotic growth of the underlying sequence.

  5. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  7. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.

  8. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    In regular perturbation theory, the solution is expressed as a power series in a small parameter . [1] [2] The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of usually become smaller. An approximate 'perturbation solution' is obtained by truncating the series, often keeping only the ...

  9. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.