When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number of steps to calculate the GCD of two natural numbers, a and b, may be denoted by T(a, b). [96] If g is the GCD of a and b, then a = mg and b = ng for two coprime numbers m and n. Then T(a, b) = T(m, n) as may be seen by dividing all the steps in the Euclidean algorithm by g. [97]

  4. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    This fact can be used to find the lcm of a set of numbers. Example: lcm(8,9,21) Factor each number and express it as a product of prime number powers. = = = The lcm will be the product of multiplying the highest power of each prime number together. The highest power of the three prime numbers 2, 3, and 7 is 2 3, 3 2, and 7 1, respectively. Thus,

  5. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.

  6. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    A fast way to determine whether two numbers are coprime is given by the Euclidean algorithm and its faster variants such as binary GCD algorithm or Lehmer's GCD algorithm. The number of integers coprime with a positive integer n, between 1 and n, is given by Euler's totient function, also known as Euler's phi function, φ(n).

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital. gcd( m , n ) ( greatest common divisor of m and n ) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n ).

  8. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    The Brahmagupta–Fibonacci identity states that the product of two sums of two squares is a sum of two squares. Euler's method relies on this theorem but it can be viewed as the converse, given n = a 2 + b 2 = c 2 + d 2 {\displaystyle n=a^{2}+b^{2}=c^{2}+d^{2}} we find n {\displaystyle n} as a product of sums of two squares.

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The number x = 2 is most often used in this basic primality check, and n = 341 = 11 × 31 is notable since , and n = 341 is the smallest composite number for which x = 2 is a false witness to primality.