When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    If a ≡ b (mod m), then it is generally false that k a ≡ k b (mod m). However, the following is true: If c ≡ d (mod φ(m)), where φ is Euler's totient function, then a c ≡ a d (mod m) —provided that a is coprime with m. For cancellation of common terms, we have the following rules: If a + k ≡ b + k (mod m), where k is any integer ...

  6. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    t 3 = 6 is the modular multiplicative inverse of 5 × 7 (mod 11). Thus, X = 3 × (7 × 11) × 4 + 6 × (5 × 11) × 4 + 6 × (5 × 7) × 6 = 3504. and in its unique reduced form X ≡ 3504 ≡ 39 (mod 385) since 385 is the LCM of 5,7 and 11. Also, the modular multiplicative inverse figures prominently in the definition of the Kloosterman sum.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    output: Integer S in the range [0, N − 1] such that S ≡ TR −1 mod N m ← ((T mod R)N′) mod R t ← (T + mN) / R if t ≥ N then return t − N else return t end if end function To see that this algorithm is correct, first observe that m is chosen precisely so that T + mN is divisible by R .

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers. On the other hand, computing the modular discrete logarithm – that is, finding the exponent e when given b , c , and m – is believed to be difficult.

  9. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or U(Z n). As a consequence of Lagrange's theorem, the order of a (mod n) always divides φ(n). If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n.