Ad
related to: formula to calculate kwamazon.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
The kilowatt-hour is a composite unit of energy equal to one kilowatt (kW) sustained for (multiplied by) one hour. The International System of Units (SI) unit of energy meanwhile is the joule (symbol J). Because a watt is by definition one joule per second, and because there are 3,600 seconds in an hour, one kWh equals 3,600 kilojoules or 3.6 ...
Engine power is the power that an engine can put out. It can be expressed in power units, most commonly kilowatt, pferdestärke (metric horsepower), or horsepower.In terms of internal combustion engines, the engine power usually describes the rated power, which is a power output that the engine can maintain over a long period of time according to a certain testing method, for example ISO 1585.
Electric power is the rate of transfer of electrical energy within a circuit.Its SI unit is the watt, the general unit of power, defined as one joule per second.Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.
For example, when a light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ. This same amount of energy would light a 40-watt bulb for 2.5 hours, or a 50-watt bulb for 2 hours.
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =
This is exactly the value estimated by the formula stated earlier. EXAMPLE: Torque applied at different diameters , K v (rpm/V) {\displaystyle K_{\text{v (rpm/V)}}} = 3600 rpm/V ≈ 377 rad/s/V , K T {\displaystyle K_{\text{T}}} ≈ 0.00265 N.m/A (each calculatable if one is known) , V = 2 v, I a {\displaystyle I_{\text{a}}} = 2 A, P = 4 W ...
A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and a mass of 380 kg (840 lb), [1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines.