Search results
Results From The WOW.Com Content Network
Pressure differences result from the normal force per unit area on the sail from the air passing around it. The lift force results from the average pressure on the windward surface of the sail being higher than the average pressure on the leeward side. [1] These pressure differences arise in conjunction with the curved air flow.
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = ΔF / Δt Δx / area , which is the speed of light, c = Δx / Δt, times ...
Force on a sail results from reflecting the photon flux. The force on a sail and the actual acceleration of the craft vary by the inverse square of distance from the Sun (unless extremely close to the Sun [26]), and by the square of the cosine of the angle between the sail force vector and the radial from the Sun, so
The lift force L on a wing of area A, traveling at true airspeed v is given by =, where ρ is the density of air, and C L is the lift coefficient. The lift coefficient is a dimensionless number that depends on the wing cross-sectional profile and the angle of attack . [ 12 ]
Pressure per unit distance pascal/m L −2 M 1 T −2: vector Temperature gradient: steepest rate of temperature change at a particular location K/m L −1 Θ: vector Torque: τ: Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2
Air pressure in an automobile tire relative to atmosphere (gauge pressure) [citation needed] +210 to +900 kPa +30 to +130 psi Air pressure in a bicycle tire relative to atmosphere (gauge pressure) [57] 300 kPa 50 psi Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59]
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N
A number of different units (some only of historical interest) are shown and expressed in terms of the corresponding SI unit. Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article.