Search results
Results From The WOW.Com Content Network
Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. All naturally occurring materials, including air, water, and soil, can be induced (activated) by neutron capture into some amount of radioactivity in varying degrees, as a result of the production of neutron-rich radioisotopes.
Neutron activation analysis (NAA) is a nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic nuclei. The method is based on neutron activation and thus requires a neutron source.
Elemental analysis is a process where a sample of some material (e.g., soil, ... Neutron activation analysis involves the activation of a sample matrix through the ...
The distribution coefficient K d is the ratio of the soil's radioactivity (Bq g −1) to that of the soil water (Bq ml −1). If the radioactivity is tightly bonded to by the minerals in the soil then less radioactivity can be absorbed by crops and grass growing in the soil. Cs-137 K d = 1000; Pu-239 K d = 10000 to 100000; Sr-90 K d = 80 to 150 ...
An activation product is a material that has been made radioactive by the process of neutron activation.. Fission products and actinides produced by neutron absorption of nuclear fuel itself are normally referred to by those specific names, and activation product reserved for products of neutron capture by other materials, such as structural components of the nuclear reactor or nuclear bomb ...
By neutron irradiation of objects, it is possible to induce radioactivity; this activation of stable isotopes to create radioisotopes is the basis of neutron activation analysis. A high-energy most interesting object which has been studied in this way is the hair of Napoleon's head, which has been examined for its arsenic content. [1]
Results are generally communicated as the dynamic structure factor (also called inelastic scattering law) (,), sometimes also as the dynamic susceptibility ′ ′ (,) where the scattering vector is the difference between incoming and outgoing wave vector, and is the energy change experienced by the sample (negative that of the scattered neutron).
The High Flux Isotope Reactor (HFIR) is a nuclear research reactor at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, United States.Operating at 85 MW, HFIR is one of the highest flux reactor-based sources of neutrons for condensed matter physics research in the United States, and it has one of the highest steady-state neutron fluxes of any research reactor in the world.