Search results
Results From The WOW.Com Content Network
The potential is monotonically increasing in r and it is negative, implying the force is attractive. In the SI system, the unit of the Yukawa potential is the inverse meter . The Coulomb potential of electromagnetism is an example of a Yukawa potential with the e − α m r {\displaystyle e^{-\alpha mr}} factor equal to 1, everywhere.
The force is negative, indicating that the force is attractive: by moving the two plates closer together, the energy is lowered. The presence of ħ shows that the Casimir force per unit area F c / A is very small, and that furthermore, the force is inherently of quantum-mechanical origin.
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
When k is less than one, the inverse-cube force is repulsive, whereas when k is greater than one, the force is attractive. An inverse-cube central force F 2 (r) has the form = where the numerator μ may be positive (repulsive) or negative (attractive). If such an inverse-cube force is introduced, Newton's theorem says that the corresponding ...
The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses , positions , and velocities . Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements .
According to the theory of the Dirac sea, developed by Paul Dirac in 1930, the vacuum of space is full of negative energy. This theory was developed to explain the anomaly of negative-energy quantum states predicted by the Dirac equation. A year later, after work by Weyl, the negative energy concept was abandoned and replaced by a theory of ...
A positive value of U is due to a repulsive force, so interacting particles are at higher energy levels as they get closer. A negative potential energy indicates a bound state (due to an attractive force). The Coulomb barrier increases with the atomic numbers (i.e. the number of protons) of the colliding nuclei:
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...