When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    Intensity can be found by taking the energy density (energy per unit volume) at a point in space and multiplying it by the velocity at which the energy is moving. The resulting vector has the units of power divided by area (i.e., surface power density). The intensity of a wave is proportional to the square of its amplitude.

  3. Luminous intensity - Wikipedia

    en.wikipedia.org/wiki/Luminous_intensity

    Luminous intensity is the perceived power per unit solid angle. If a lamp has a 1 lumen bulb and the optics of the lamp are set up to focus the light evenly into a 1 steradian beam, then the beam would have a luminous intensity of 1 candela. If the optics were changed to concentrate the beam into 1/2 steradian then the source would have a ...

  4. Light intensity - Wikipedia

    en.wikipedia.org/wiki/Light_intensity

    Luminous intensity, a photometric quantity measured in lumens per steradian (lm/sr), or candela (cd) Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2) Radiance, commonly called "intensity" in astronomy and astrophysics (W·sr −1 ...

  5. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical ...

  6. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The electromagnetic waves in each of these bands have different characteristics, such as how they are ...

  7. Attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Attenuation_coefficient

    Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit (e.g. one meter) thickness of material, so that an attenuation coefficient of 1 m −1 means that after passing through 1 metre, the radiation ...

  8. Visible spectrum - Wikipedia

    en.wikipedia.org/wiki/Visible_spectrum

    [23] [24] The luminous efficiency function in the NIR does not have a hard cutoff, but rather an exponential decay, such that the function's value (or vision sensitivity) at 1,050 nm is about 10 9 times weaker than at 700 nm; much higher intensity is therefore required to perceive 1,050 nm light than 700 nm light.

  9. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.