Ad
related to: biodiversity and ecological redundancy theory of change in animals
Search results
Results From The WOW.Com Content Network
In ecology, functional equivalence (or functional redundancy) is the ecological phenomenon that multiple species representing a variety of taxonomic groups can share similar, if not identical, roles in ecosystem functionality (e.g., nitrogen fixers, algae scrapers, scavengers). [1] This phenomenon can apply to both plant and animal taxa.
Alterations to landscapes are often accompanied with negative side effects including fragmentation, species losses, and nutrient runoff, which can effect the stability of an ecosystem, productivity of an ecosystem, and the functional diversity and functional redundancy by decreasing species diversity.
Graph shows principles of intermediate disturbance hypothesis: I. at low levels of ecological disturbance species richness decreases as competitive exclusion increases, II. at intermediate levels of disturbance, diversity is maximized because species that thrive at both early and late successional stages can coexist, III. at high levels of ...
Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment. [15] It is the study of how the population sizes of species living together in groups change over time and space, and was one of the first aspects of ecology to be studied and modelled mathematically.
Ecological succession is the process of change in the species that make up an ecological community over time. The process of succession occurs either after the initial colonization of a newly created habitat, or after a disturbance substantially alters a pre-existing habitat. [ 1 ]
The balance of nature, also known as ecological balance, is a theory that proposes that ecological systems are usually in a stable equilibrium or homeostasis, which is to say that a small change (the size of a particular population, for example) will be corrected by some negative feedback that will bring the parameter back to its original "point of balance" with the rest of the system.
The stable state landscape is changed by environmental drivers, which may result in a change in the quantity of stable states and the relationship between states. By the ecosystem perspective, the landscape of the ecological states is changed, which forces a change in the ecosystem state.
Although not strictly necessary for a neutral theory, many stochastic models of biodiversity assume a fixed, finite community size (total number of individual organisms). ). There are unavoidable physical constraints on the total number of individuals that can be packed into a given space (although space per se isn't necessarily a resource, it is often a useful surrogate variable for a ...