Search results
Results From The WOW.Com Content Network
State functions represent quantities or properties of a thermodynamic system, while non-state functions represent a process during which the state functions change. For example, the state function PV is proportional to the internal energy of an ideal gas, but the work W is the amount of energy transferred as the system performs work. Internal ...
Thermodynamic temperature is a specifically thermodynamic concept, while the original directly measureable state variables are defined by ordinary physical measurements, without reference to thermodynamic concepts; for this reason, it is helpful to regard thermodynamic temperature as a state function.
This state-space realization is called controllable canonical form because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state). The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] ().
For a holonomic process function, an auxiliary state function (or integrating factor) λ may be defined such that Y = λX is a state function. For a non-holonomic process function, no such function may be defined. In other words, for a holonomic process function, λ may be defined such that dY = λδX is an exact differential.
The difference between initial and final states of the system's internal energy does not account for the extent of the energy interactions transpired. Therefore, internal energy is a state function (i.e. exact differential), while heat and work are path functions (i.e. inexact differentials) because integration must account for the path taken.
A state variable is one of the set of variables that are used to ... a state variable is an independent variable of a state function. Examples ... a non-profit ...
The automaton uses the state transition function Δ to determine the next state using the current state, and the symbol just read or the empty string. However, "the next state of an NFA depends not only on the current input event, but also on an arbitrary number of subsequent input events.
A state diagram for a door that can only be opened and closed. A state diagram is used in computer science and related fields to describe the behavior of systems. State diagrams require that the system is composed of a finite number of states. Sometimes, this is indeed the case, while at other times this is a reasonable abstraction.