When.com Web Search

  1. Ad

    related to: quadrilateral area calculator 4 sides

Search results

  1. Results From The WOW.Com Content Network
  2. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Tangential quadrilateral: the four sides are tangents to an inscribed circle. A convex quadrilateral is tangential if and only if opposite sides have equal sums. Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex ...

  3. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    where K is the area of the quadrilateral and s is its semiperimeter. For a tangential quadrilateral with given sides, the inradius is maximum when the quadrilateral is also cyclic (and hence a bicentric quadrilateral). In terms of the tangent lengths, the incircle has radius [8]: Lemma2 [14]

  4. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  5. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  6. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    A formula for the area K of a cyclic orthodiagonal quadrilateral in terms of the four sides is obtained directly when combining Ptolemy's theorem and the formula for the area of an orthodiagonal quadrilateral. The result is [29]: p.222 = (+).

  7. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area ⁠ K {\displaystyle K} ⁠ of a cyclic quadrilateral whose sides have lengths ⁠ a , {\displaystyle a,} ⁠ ⁠ b , {\displaystyle b,} ⁠ ⁠ c , {\displaystyle c ...

  8. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    Hutton's definitions in 1795 [4]. The ancient Greek mathematician Euclid defined five types of quadrilateral, of which four had two sets of parallel sides (known in English as square, rectangle, rhombus and rhomboid) and the last did not have two sets of parallel sides – a τραπέζια (trapezia [5] literally 'table', itself from τετράς (tetrás) 'four' + πέζα (péza) 'foot ...

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Equivalently, it is a quadrilateral whose four sides can be grouped into two pairs of adjacent equal-length sides. [ 1 ] [ 7 ] A kite can be constructed from the centers and crossing points of any two intersecting circles . [ 8 ]