Search results
Results From The WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The correct answer to this question is "Yes, it does", and it is one of the pitfalls concerning the application of Faraday's Law. For some people it is contraintuitive to assume that a Lorentz force is exerted to a charge although there is no relative motion between the magnet and the charge.
IAT consists of 60 questions: 15 questions each from Biology, Chemistry, Mathematics, and Physics. Total time for answering the test is 3 hours. Questions are of multiple choice type with only one correct answer. Each correct answer is awarded 4 marks. Each incorrect answer leads to the deduction of 1 mark. Unanswered questions are awarded 0 mark.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally ...
Ørsted investigated and found the physical law describing the magnetic field, now known as Ørsted's law. Ørsted's discovery was the first connection found between electricity and magnetism, and the first of two laws that link the two; the other is Faraday's law of induction.
A simple interactive tutorial on electromagnetic induction (click and drag magnet back and forth) National High Magnetic Field Laboratory; Roberto Vega. Induction: Faraday's law and Lenz's law – Highly animated lecture, with sound effects, Electricity and Magnetism course page; Notes from Physics and Astronomy HyperPhysics at Georgia State ...
Inductance — The phenomenon whereby the property of a circuit by which energy is stored in the form of an electromagnetic field. Induction heating — Heat produced in a conductor when eddy currents pass through it. Joule heating — Heat produced in a conductor when charges move through it, such as in resistors and wires.
The third equation [C] relates the electromagnetic field to electromagnetic force. The rest of the equations [D] to [L] relates the electromagnetic field to material data: the current and charge densities as well as the material medium. Here the twelve Maxwell's equations have been given, respecting the original notations used by Maxwell.