Search results
Results From The WOW.Com Content Network
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
Informally, a message authentication code system consists of three algorithms: A key generation algorithm selects a key from the key space uniformly at random. A MAC generation algorithm efficiently returns a tag given the key and the message. A verifying algorithm efficiently verifies the authenticity of the message given the same key and the tag.
PKCS Standards Summary; Version Name Comments PKCS #1: 2.2: RSA Cryptography Standard [1]: See RFC 8017. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
Public-key algorithms are most often based on the computational complexity of "hard" problems, often from number theory. For example, the hardness of RSA is related to the integer factorization problem, while Diffie–Hellman and DSA are related to the discrete logarithm problem.
RSA (Rivest–Shamir–Adleman) is another notable public-key cryptosystem. Created in 1978, it is still used today for applications involving digital signatures. [17] Using number theory, the RSA algorithm selects two prime numbers, which help generate both the encryption and decryption keys. [18]
In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories.It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography.