Search results
Results From The WOW.Com Content Network
The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. This rule is employed by the TI-83 calculator boxplot and "1-Var Stats" functions.
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
Median (Q 2 or 50th percentile): the middle value in the data set; First quartile (Q 1 or 25th percentile): also known as the lower quartile q n (0.25), it is the median of the lower half of the dataset. Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [7]
It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the
Box plot : In descriptive statistics, a boxplot, also known as a box-and-whisker diagram or plot, is a convenient way of graphically depicting groups of numerical data through their five-number summaries (the smallest observation, lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation). A boxplot may also indicate which ...
the arithmetic mean of the maximum and minimum values of a data set. Midhinge the arithmetic mean of the first and third quartiles. Quasi-arithmetic mean A generalization of the generalized mean, specified by a continuous injective function. Trimean the weighted arithmetic mean of the median and two quartiles. Winsorized mean
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range.The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores.
There are several types of indices used for the analysis of nominal data. Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation.