Search results
Results From The WOW.Com Content Network
The heat equation is also widely used in image analysis (Perona & Malik 1990) and in machine learning as the driving theory behind scale-space or graph Laplacian methods. The heat equation can be efficiently solved numerically using the implicit Crank–Nicolson method of (Crank & Nicolson 1947).
Fundamental solution of the one-dimensional heat equation. Red: time course of (,).Blue: time courses of (,) for two selected points. Interactive version. The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space R d, which has the form of a time-varying Gaussian function, (,,) = / (| |), which is defined for all , and >. [1]
This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...
In numerical analysis, the FTCS (forward time-centered space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. [1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation.
In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations. [1] It is a second-order method in time. It is implicit in time, can be written as an implicit Runge–Kutta method, and it is numerically stable.
As an example, number X11 denotes the Green's function that satisfies the heat equation in the domain (0 < x < L) for boundary conditions of type 1 at both boundaries x = 0 and x = L. Here X denotes the Cartesian coordinate and 11 denotes the type 1 boundary condition at both sides of the body.
Equation gives the stability requirement for the FTCS scheme as applied to one-dimensional heat equation. It says that for a given , the allowed value of must be small enough to satisfy equation . Similar analysis shows that a FTCS scheme for linear advection is unconditionally unstable.
The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]