Search results
Results From The WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a similar formula. Another generalization of the Laplace operator that is available on pseudo-Riemannian manifolds uses the exterior derivative , in terms of which the "geometer's Laplacian" is ...
The Laplace transform is named after mathematician and astronomer Pierre-Simon, Marquis de Laplace, who used a similar transform in his work on probability theory. [4] Laplace wrote extensively about the use of generating functions (1814), and the integral form of the Laplace transform evolved naturally as a result. [5]
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.
nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates (t, x, y, z), it has the form
On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the conventional normalization of the codifferential assures that the Laplace–de Rham operator is (formally) positive definite, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both ...
A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.
Laplace operator, a differential operator often denoted by the symbol ∇ 2; Hessian matrix, sometimes denoted by ∇ 2; Aitken's delta-squared process, a numerical analysis technique used for accelerating the rate of convergence of a sequence